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HYDRODYNAMICS OF FLUIDS OF VARIABLE VISCOSITY

S. 8. Kutateladze, V. I. Popov, and E. M. Khabakhpasheva
Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 1, pp. 45~49, 1966

An invariant theological equation is proposed for the flow of fluids
with a variable viscosity independent of time. It is shown to be de-
sirable to distinguish 2 subclass of fluids with a linear fluidity law.

1. Fluid media with variable viscosity are widely
used in the chemical and processing industries. Here
the term "variable viscosity" denotes that the viscosity
is a function not only of the thermodynamic parame-
ters of state (p, T) but also of certain other parame-
ters. It is usual, in this case, to speak of a fluid with
anomalous viscosgity. However, the multitude of fluid
media with variable viscosity makes it virtually im-
possible to treat them all as anomalous.

As a rule, the variable viscosity is related with
the dispersion phase, which has a certain structure.
We shall describe as fluids with structural viscosity
those media whose viscosity for given p and T is a
single-valued function of the tangential stresses*

p=p (). 1.1)

There are alarge number of fluids whose viscosities
are a complex function of shearing stress and the time
during which this stress acts (thixotropic and rheo-
pectic), as well as fluids with elastic properties (vis-
coelastic). The hydrodynamics of such fluids will not
be considered here.

It should be noted that viscosity is a more complex
function of the tangential stress than its reciprocal—
fluidity, Therefore it is convenient to construct a phe-
nomenological theory of the flow of fluids with struc-
tured viscosity relative to ¢(7), which in a one-dimen-
sional flow is defined as

w
P = T— T

{7y is the yield point). (1.2)

2. We shall congsider the relation between fluidity
and tangential stresses. A considerable number of
complex empirical expressions based on more or less
successful approximations of the nonlinear flow curve
in a certain interval of stresses or shear rates [1, 3}
have failed to enter into general use, whereas Ostwald's
widely accepted power formula {4], which tempts by
the simplicity of the operationsinvolved, will not stand
criticism either from the viewpoint of correspondence
with the limit properties of ¢(7) nor from the viewpoint
of the dimensionality of the coefficients it contains.

*Other terms are algo used for such fluids: "non-
Newtonian fluids with rheological characteristics in-
dependent of time™ [1], "generalized newtonian fluids®

[2].

Figure 1 shows schematically the general relation
@(7) for the case dg/dT > 0 when 7 > 74 according to
the experimental data of a series of authors.* In the
region 7 < 7y, ¢ = 0 and the fluid exhibits so-called
conditional elasticity. In the region 7; < T < Ty the be-
havior of the fluid is characterized by constant fluidity
@,. Naturally, there is some arbitrariness in deter-
mining 7, since the transition from constant fluidity
@, to variable fluidity is realized smoothly on a cer-
tain segment AT.

Fig. 1. The nature of the
function ¢ = ¢ (7).

We shall call the quantity 7, the limit of stability
of the macrostructure of the fluid, and ¢, the zero
fluidity; we shall denote the fluidity as 7 — « by ¢.

As the scale of variation of fluidity it is natural
to take the difference @, — ¢;, and as the unknown
variable the fluidity defect ¢, ~ ¢. Then from the
quantities ¢, @;, @« and 7 — 7 it is possible to form
two dimensionless complexes, by introducing a cer-
tain quantity 4, which can serve as a measure of the
structural stability of the fluid:

T—Ty

Qoo — @ -
Ty =09 g -

T = 2.1)
The relation ¢,(7,) has the same character for
fluids with both increasing (¢, > ¢g), and decreasing
(0w < @g) fluidity. In this case d%ps/d7f >0 and for

the fluidity we have

dg, = — ¢ndT,. 2.2)
Correspondingly,

0, =1 when m<r<n, (2.3)

n=1, @,=exp(—71,) when 1>un, 2.4)

1
ns1, ¢,=[1—1,(1—n)]"7 whent>u. (2.5)

Whence it follows that the fluidity for n = 1 is char-
acterized by a set of five quantities {t,, Ty, ¢ Peo, 0.

*For so-called dilatant fluids de/d7 < 0.
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In strongly structured fluids the break-up of the
structure under the influence of shearing stress leads
to a considerable change in fluidity. Such fluids in-

clude polymer melts, concentrated suspensions, pastes,

bitumens, etc.

py gt

5

Fig. 2. Bitumen M III, t =
=20°C, ¢, =3.8.107¢p"}
Poo =20 - 2074P7L, 7, =
=12.5 + 10 dyne/cm?.

For weakly structured fluids (polymer solutions,
low-concentration suspensions, emulsions, latexes)
the change in fluidity under the action of shearing
stress is relatively slight. ,

At sufficiently small T4 the region of T of practical
interest is satisfactorily described by the first two or
three terms of the expansion of Eq. (2.4). Rewriting
the latter in the form#*

T—T

p= qvw—(%o—%)exp(——é r— ) @.8)

we get

¢=qot0(v—r) — g

P~ Po @.7)

or, confining ourselves to the first two terms of the
expansion,

P=¢ +0(t —1y). 2.8)

fe

ry = dyne /em?
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Fig. 3. Solution of 1.69%
rubber in toluene, t = 24°C,
@ =0.7P7Y, ¢, =5.1P7",

Equation (2, 8) is very convenient for constructing
approximate methods of calculating the flow of fluids
with structural viscosity. Therefore, in the theory, it
is degirable to distinguish a gspecial subclass of fluids
with a linear fluidity law. For a dilatant fluid a minus

*One should also keep in mind that for the majority
of fluids 7y = 0,

sign should be inserted in front of the second term of
@2.8).

3. For a laminar isothermal fluid flow in a circu-
lar cylindrical channel the tangential stress distribu-
tion has the form

T=1E, E=r71/r. :.1)

Here £ is the dimensionless radius, Ty is the value
at the wall. When 1, = 0 and 7 < 7y as a result of inte-
gration of the equation

dw

apP
2 e —qlr—m) (r=—g ) 6.2)
we get the velocity profile
w = YyTu@eTe (1 — 12 ] ). (3.3)

At 7y = 0 and with a linear law of fluidity ¢ = ¢,{1 +
+47) we get

w = yTure, [(1 — E) + 507, (1 — I, (3.4)

Wmax = Ygvuroy (1 + /587y) (9 = ___0_.) ’ (3.5)
<wd = Yyrurspy (1 + 4/587) e (3.6)
’ w 1—£2 4% Bv,, (1 —E9)

o= = Tme, @7
Ymax 132597,
Omax = ) 2 T+ 9:9t, ° 3.8)
%
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Fig. 4, Solution of sodium-

carboxymethyl cellulose in

water—1%, t=20°C, ¢, =

=4.5P7, gy =9P7!, 7 =
= 50 dyne/cm?,

Here wmay is the maximum velocity at the tube
axis, and {w) is the mean flow rate.

From (3. 8) it is clear that wmgx < 2 when 4 > 0,
i.e., the velocity profile is fuller than for the flow
of ordinary Newtonian fluids (4 = 0); conversely,
wmax > 2 when ¢ < 0, Evidently, in the given case
it is convenient to construct the Reynolds number of
the flow in the form Rp = {(w> Doep.

Here g, is the zero fluidity (7 — 0)., Taking into
account (3.6), we find that

==l B - ) 00

4. For longitudinal isothermal flow past a plate
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Fig. 5. 1) Polyvinyl alcohol in water
2.5%, n=-1, 1y =0, Ty = 0; 2) poly-
methacrylate in water 0,025%, n=1,
11 = 0, Ty = 0; 3) carboxymethyl cel-
lulose in water 1%, n=0, 7y =50
dyne/cm?, 7, = 0; 4) rubber in tolu-
ene 1.69%, n=—1, 7, = 25 dyne/cm?,
Ty = 0; 5) bitumen M III, n= -6, T, =
=12.5 dyne/cm?.
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Fig. 6. 1) Carboxymethyl cellulose

in water 0.25%, n=1, 1y=0, T, =

= 0; 2) starch in glycol 47.4%, n=
=2, 1y=0, Ty =0.
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Fig. 7. Starch in glycol 47. 4%,
t=25.5°C, 7y=111P7L, gy =
=46P"1,
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Fig. 8. Carboxymethyl cellulose
in water 0.25%, t = 45°—48° C,

9o =275 p7, 9o =T71p7.
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Fig. 9. Polymethacrylate in water

0.25%, 1—¢@p = 29.5 ™, ¢ =108 p7};

2—@y = 27.5 p~), @ =105 p7}; 3—
@o=24p" pp=100p~"
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Fig. 10. Polyvinyl alcohol in
water 2.5%, 1~g¢, = 42 p?,
g = 70 p7Y; 2—¢¢ = 39 p7};
@oo = 64.5 71 38—y =384.5p7,
Qo =56.5 p~L.
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the tangential stress profile can be represented in
the form [5]
T Ty (1 — 382 4 2E%)

E=y9/8). (4.1)

Here ¢ is the dimensionless distance along the nor-
mal from the wall, 6 is the thickness of the boundary
layer. For a linear law of fluidity the distribution of
the longitudinal component of the velocity vector is
given by

dwy [ dy = @yt + 012, 4.2)
Integrating (4.2) with allowance for (4.1), we get

wy = Tu@d [ — 8 + 58! + 01l — 20,8 +
(4.3)
+ 0wkt 4 Y0t B — 200,80 + 0 T .

When £ =1, we have wx = wy, where w; is the ve-
locity of the oncoming flow and, consequently,

wy = Yy Tuped (1 + 28/55010) . (4.4)

For the friction coefficient, using (4.4), we have

2Ty = %[(1 + ig;i )‘/2—1] Ry = wedqop,

€= war
4.5)

i}
= pw,’.

5. For the experimental determination of the rhe-
ological characteristics of a fluid we compute directly
not the true law ¢ (1), but the relation between the so-
called apparent fluidity ¢j and the tangential shearing
stress at the wall 7y. Thus, for example, in a capil-
lary viscometer from the measured flow Q and the
pressure drop AP we find the quantities

N 8LQ . roAP
Pe= iap 0 = Tape

(5.1)
where r and L are the radius and length of the capil-
lary. In the region 7 < 7y we have @ = ¢, and in the
region 7 > 74 the function ¢(1) # @ (). From (5.1)
there follows

wy = Y4PrTwls . (5.2)
Comparing (5.2) with (3.6), we have
8, = 0.80. (5.3)

6. We shall make a comparison of the results obtained with ex-
periment data, Above it was shown that the character of the functions
@(1) and ¢y(7) is analogous, while the quantity & can be determined
from 9y, in accordance with (5.3); therefore the rheological equation
(2.4) can be checked from the data of viscometric measurements,
i.e., in the form @u(Ty).

Figures 2-4 give experimental data for bitumen according to
Mikhailov {6], for a solution of rubber in toluene according to Reiner
{2], and also for a 1% aqueous solution of carboxymethyl celiulose
according to our measurements. In the first case the yield point is
distinctly observed, and in the other two cases the limit of structural
stability. In Figs. 5 and 6 the same data and data on a series of other
fluids are presented in semilogarithmic anamorphosis, where

P — P
Poo— Po ’

Ton
Poo— Po

Ap = AT =

It should be noted that in Figs. 6 and 7 the solution of starch in
glycol is [7] a fluid of dilatant type; A¢ =1 when A7 = 0.

Clearly, within the limits of accuracy of the experiments and the
estimates of ¢, and ¢, the rheological law (2.4) is quite well ex-
pressed.

Considering Figs. 5 and 6, it is possible to conclude that the scat-
ter of the experimental points about the straight lines, especially in
the region of large A7, is quite large. However, it should be kept in
mind that with increase in 7 a small error in the experimental deter-
mination of ¢ corresponds to a considerable error in the quantity A¢
represented in the graphs. In a number of cases the accuracy of the
experimental data is hard to estimate; however, the fluidity curves
calculated by us from Eq. (2.4) with values of & obtained from Figs.
5 and 6 (9 is the slope of the straight line) deviated from the experi-
mental curves shown in Figs. 2~-4 and 7 by not more than 5%.

Figures 8~10 show experimental data [8] that confirm the exis-
tence of fluids with a linear fluidity law in the interval of 7 of prac-
tical interest.

REFERENCES

1. W. K, Wilkinson, Non-Newtonian Fluids [Rus~
sian translation], Izd-vo "Mir," 1964,

2. M. Reiner, Deformation, Strain, and Flow
[Russian translation], GNTI, 1963.

3. W. Philipof, Viskositit der Kolloide, Stein-
kopf, 1942,

4, W. Ostwald, Kolloid. Zeitschrift, "Uber die
Geschwindigkeitsfunktione der Viskositidt disperser
Systeme," vol. 34, no. 3, pp. 157-160, 1927.

5. S. S. Kutateladze, Fundamentals of Heat Trans-
fer Theory [in Russian], Mashgiz, 1962,

6. N. V. Mikhailov, "Elastoplastic properties of
petroleum bitumens," Kolloidnyi zhurnal, vol. 17, no.
3, pp. 242-246, 1955,

7. A. S. Roberts, "Measurement of the dilatant
flow properties of some non-Newtonian suspensions, "
J. Chem. and Engng. Data, vol. 8, no. 3, p. 440,
1963.

8. Ju Chin Chu, Frank Brown, and K. G. Burridge,
"Heat transfer coefficients of pseudo-plastic fluids,"
Industrial and Engng. Chemistry, vol. 45, no. 8, pp.
1686—-1696, 1953.

22 February 1965 Novosibirsk



